Outreach

Ferroelectric materials and applications

Ferroelectrics are a category of material that in absence of an external applied voltage they still show a remanent polarization. The reason can be found in their atomic structure. For example the family of perovskites are ferroelectric material due to their specific crystal arrangement. Perovskite all share this similar ABX3 structure, where usually the X is oxygen and the A and B represent two different metals.

Fig.1 Phases of KNbO3 (potassium niobate) at different temperatures. It shows some structures where is possible to have a remanent polarization due to non-centro symmetry of the Niobium atom (in green) inside the cubic structure. When the Niobium atom is exactly at the center (in this case above 708 K) the material is not anymore ferroelectric [1].

One of most famous and studied is lead zirconate (PbZrxTi1-xO3) commonly called PZT. One of the biggest issues with this material is the toxicity due to the presence of the lead. For this reason, researchers focused on finding a material with similar characteristics. So many of them came out like barium titanate (BaTiO3), know as BTO or strontium titanate (SrTiO3) known as STO. In the picture here above another example of a lead-free perovskite material: potassium niobate (KNO3).

The remanent polarization properties is given by the presence of an atom inside this cubic-like structure that is not exactly at the center but slightly shifted. This non centro-symmetric structure give rise to a non-compensated positive charge of the body atom (Ti or Nb for example). The ferroelectric properties then are just given by the presence of the non-compensated charge when all the external voltages are removed. The temperature has an important role since for every material, for a given energy the structure tend to become a symmetric body centered cubic structure, hence there is a critical temperature after which the ferroelectric materials become paraelectrics. In this state they still react non-linearly to an external applied field but they do not show a remanent effect in absence of it.

Fig.2 Behaviour of a dielectric, a paraelectric and a ferroelectric material under an applied external electric field [2].

The polarization bistability for a zero external applied field is the key feature that makes ferroelectrics good candidates for memory applications. In recent year, many studies focused on integrating the ferroelectric materials in order to create new memories, more competitive from an energy computation point of view or overall faster writing and reading speed as FE-Fet [3], FE-RAM [4] or MESO [5] and FESO [6]. If for the first two the ferroelectric properties are aimed to improve the properties of already existing devices, like transistors or non-volatile random access memories; for the MESO and FESO case the aim is more ambitious. The idea is to develop a new logic based on spin controlled by ferrolectric non-volatility.

Recently, others materials showed to have ferroelectricity properties like Germanium telluride (GeTe), Indium arsenide (InAs) and many others. These materials show a simpler combination of only two atoms and that are not insulating like perovskites (sually they are metalic or semiconducting).

The bigger advantage is the possibility to pattern them in order to produce nanodevices, given by an higher durability when subjected to nanofabrication steps like etching. This one tend to destroy the crystal structure and hence the properties of the insulating perovskites . As a consequence, these new materials bring the ferroelectric-based devices a step closer to mass production and adoption.

If we take into account the case of germanium telluride, the ferroelectricity comes from the unusual bonds between germanium and tellurium layers. They tend to form a stronger bond with a neighbour layer with respect to the other forming a bilayer structure that is not symmetric (see pictures below). Similarly under an applied electric field the structure reorganize, causing the polarization to change sign (if the field is strong enough). It can be also seen as the germanium in the center of the cell moving along the larger diagonal of the deformed cubic cell (also called rhombohedral cell, left picture).

Fig. 3  Left: Cell structure of Germanium telluride (yellow Germanium, blue tellurium). Right: Switching mechanism: a) stable configuration of layer of Germanium (yellow dots) bonded to Tellurium ones (in red). b) when an electric field is applied, an unstable state appear where Germanium is bond to both top and bottom Tellurium atoms. c) Final state in which the Germanium atoms will be bond to the Tellurium atoms in the upper level with respect to the initial state [7]

So in a similar way to perovskites germanium telluride is know to show a remanent polarization at room temperature that can be controlled by an external applied electric field.

I hope you enjoyed this small talk on ferroelectrics, I will write in future a part 2 to explain the relation between ferroelectricity and spin-logic based devices. For further information you can email me at: salvatore.teresi@cea.fr

References

[1] P. Hirel et al., Phys. Rev. B 92 (2016) 214101.

[2] http://faculty-science.blogspot.com/2010/11/ferroelectricity.html

[3] Stefan Ferdinand Müller (2016). Development of HfO2-Based Ferroelectric Memories for Future CMOS Technology Nodes. ISBN 9783739248943.

[4] Dudley A. Buck, “Ferroelectrics for Digital Information Storage and Switching.” Report R-212, MIT, June 1952.

[5] Manipatruni, S., Nikonov, D.E., Lin, CC. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019). https://doi.org/10.1038/s41586-018-0770-2

[6] Noël, P., Trier, F., Vicente Arche, L.M. et al. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature 580, 483–486 (2020). [7] A. V. Kolobov, D. J. Kim, A. Giussani, P. Fons, J. Tominaga, R. Calarco, and A. Gruverman, Ferroelectric switching in epitaxial GeTe films, APL Materials 2, 066101 (2014).

[7] A. V. Kolobov, D. J. Kim, A. Giussani, P. Fons, J. Tominaga, R. Calarco, and A. Gruverman, Ferroelectric switching in epitaxial GeTe films, APL Materials 2, 066101 (2014).

Diseño y desarrollo web Triplevdoble